99久视频只有精品2019-亚洲一区激情校园小说-99久热在线精品996热是什么-国内揄拍国内精品对白86-久久久无码精品一区二区三区

技術文章您現在的位置:首頁 > 技術文章 > Broadpharm知識課堂什么是生物素化?What is Biotinylation?

Broadpharm知識課堂什么是生物素化?What is Biotinylation?

更新時間:2024-10-19   點擊次數:1232次

生物素(Biotin)為B族維生素之一,又稱維生素H、維生素B7、輔酶R(Coenzyme R)等。生物素是一種水溶性維生素,屬于B族維生素的一種。

生物素化,也稱為生物素標記,是將生物素共價連接到生物分子(如蛋白質、抗體、肽、寡核苷酸和其他大分子)的過程。該反應是快速、特異性的,并且由于生物素體積小 (MW = 244.31) 而不太可能干擾生物分子的自然功能。

生物素與鏈霉親和素和親和素特異性結合,形成具有強親和力 (Kd, ~ 10-14 mol/L) 和快速接通速率的復合物。即使在高/低 pH 值、高溫、高鹽濃度等惡劣條件下,復合物也非常穩定。

生物素-親和素和鏈霉親和素系統廣泛用于靶抗原/細胞的檢測和分離。這些應用包括免疫測定(ELISA 和 Western 是常規應用)、親和色譜、沉降測定、超分子構建、靶向癌細胞進行藥物遞送等。最近,基于生物素-(strept)親和素相互作用和磁珠的蛋白質/細胞分離的應用需求不斷增加。


Broadpharm知識課堂什么是生物素化?What is Biotinylation?

Biotinylation, also known as biotin labeling, is the process of covalently attaching biotin(s) to biomolecules: such as proteins, antibodies, peptide, oligonucleotide, and other macromolecules. The reaction is rapid, specific and is unlikely to disturb the natural function of the biomolecules due to the small size of biotin (MW = 244.31).

Biotin specifically binds to streptavidin and avidin to form a complex with an extremely high affinity (Kd, ~ 10-14 mol/L) and fast on-rate. The complexes are very stable under even extreme conditions such as high/low pH, high temperature, high salt concentrations, etc.

Biotin-avidin and streptavidin systems are widely used in detection and separation of target antigens/cells. These applications include immunoassays (ELISAs and Westerns being the most popular applications), affinity chromatography, pull-down assays, supramolecular construction, targeting of cancer cells for drug delivery, and many others. Recently, there are increasing application demands for protein/cell separation based on biotin-(strept)avidin interaction and magnetic beads.


Broadpharm知識課堂什么是生物素化?What is Biotinylation?

Figure 1. biotin labeled antibody binds with streptavidin or avidin (four binding site available, only one is shown to binding to biotin).


Biotinylation Chemistry

For biotinylation chemistry, the most common reactions involve amines with biotin-NHS ester and click chemistry of azide with an alkyne (e.g. DBCO), as shown in Figure 2.


Broadpharm知識課堂什么是生物素化?What is Biotinylation?
Figure 2. NHS-amine chemistry (A) and click chemistry between azide-DBCO (B).


Biotinylation Reagent in Biotin Labeling

The selection of biotinylation reagent should consider a few factors: target functional group, water solubility, cell membrane permeability, cleavability, and length of the reagent.

The functional groups can be click chemistry reactive, amine reactive, carbonyl reactive, carboxyl reactive, and sulfhydryl reactive (Figure 3). There are also reversible and cleavable biotinylation reagents to help with the specific elution of biotinylated proteins.

Pegylated biotin reagents are particularly attractive due to their water solubility, no toxicity, and low immunogenic properties. Monodispersed PEGs have a well-defined chain length, allowing for specific biotin-based complexes to be designed and studied.


Broadpharm知識課堂什么是生物素化?What is Biotinylation?
Figure 3. Examples of BroadPharm's Pegylated biotinylation reagent with R 1 and R 2 options for functional groups.


In addition, BroadPharm provides desthiobiotin products for special application, such as affinity purification. Desthiobiotin is a modified form of biotin that binds less tightly to avidin and streptavidin than biotin while still providing excellent specificity. Unlike biomolecules that are labeled with biotin, proteins and other targets labeled with desthiobiotin can be eluted under a soft, mild elute conditions to avoid denaturing the protein of interest.

BroadPharm is a leader of biotinylation reagents that help advance our customer's research, and offers a variety of pegylated and non-pegylated biotinylation reagents to meet your requirement.

Journal Reference:

1. Cull and Schatz, "Biotinylation of proteins in vivo and in vitro using small peptide tags", Methods in Enzymology, 326, (2000): 430-440

2. Minde, et al., "Biotin proximity tagging favours unfolded proteins and enables the study of intrinsically disordered regions", Communications Biology, 3, 38, (2020): 1-13



靶點科技(北京)有限公司

靶點科技(北京)有限公司

地址:中關村生命科學園北清創意園2-4樓2層

© 2025 版權所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:323415  站點地圖  技術支持:化工儀器網  管理登陸

主站蜘蛛池模板: 无遮掩60分钟从头啪到尾| 亚洲精品黑牛一区二区三区| yy111111少妇无码理论片| 欧美性猛交xxxx免费视频软件| 玩丰满高大邻居人妻无码| 精品国产乱码久久久人妻| 久久精品丝袜高跟鞋| 日本最新一区二区免费不卡| 免费视频一区二区三区播放| 人妻少妇久久精品电影| 亚洲av大全一区二区三区| 国产美女自拍一区| 亚洲丁香婷婷久久一区二区| 久久久久久亚洲精品成人| 亚洲成人色| 午夜性刺激在线视频免费| 首页 综合国产 亚洲 丝袜| 色爱情人网站| 正在播放老肥熟妇露脸| 乱色熟女综合一区二区三区| 中文字幕精品一区二区熟女| 国产一区二区不卡免费视频| 欧美一区二区口爆吞精软件| 久久亚洲国产成人精品性色| 少妇与子乱毛片| 久久偷看各类wc女厕嘘嘘偷窃| 日韩一区二区三区精品| 亚洲无线一二三四区手机| 亚洲国产成人久久综合区| 国产美女久久精品香蕉| 久久久99无码一区| 国产亚洲精aa在线观看see| 亚洲欧美日韩中文字幕在线一区| 5d肉蒲团之性战奶水欧美| 99视频30精品视频在线观看| 人人妻碰人人免费| 国产少妇一区二区三区| 欧美一区二区视频免费观看| 久久精品成人免费国产| 无码专区久久综合久中文字幕| 熟女人妻在线视频|