99久视频只有精品2019-亚洲一区激情校园小说-99久热在线精品996热是什么-国内揄拍国内精品对白86-久久久无码精品一区二区三区

技術(shù)文章您現(xiàn)在的位置:首頁 > 技術(shù)文章 > ClickChemistry點擊化學(xué)疊氮試劑Azide Plus and Picolyl Azide Reagents

ClickChemistry點擊化學(xué)疊氮試劑Azide Plus and Picolyl Azide Reagents

更新時間:2023-04-22   點擊次數(shù):1447次

Azide Plus and Picolyl Azide 試劑

Kinetic comparison of conventional azide
(Figure 1). Kinetic comparison of chelating azide and non-chelating conventional azide.

Recent advances in the design of copper-chelating ligands, such as THPTA or BTTAA that stabilize the Cu(I) oxidation state in aqueous solution, improve the kinetics of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and greatly increase the sensitivity of alkyne detection. Copper-chelating ligands have also been shown to increase the biocompatibility of the CuAAC reaction by preventing the copper ions from causing biological damage1. The next step in improving the CuAAC reaction was the development of copper-chelating azides as more reactive substrates. Since it is speculated that the Cu(I)-azide association is the rate-determining step in the CuAAC catalytic cycle2, the introduction of a copper-chelating moiety at the azide reporter molecule allows for a dramatic raise of the effective Cu(I) concentration at the reaction site, enhancing the weakest link in the reaction rate acceleration(Figure 2). It has been proposed that the high reactivity of chelating azides comes from the rapid copper-azido group interaction which occurs prior to Cu(I) acetylide formation, and this renders the deprotonation of alkyne in the rate-determining step3. This concept was successfully exploited to perform CuAAC reactions using pyridine-based copper-chelating azides (picolyl azides) as substrates4-6. Nevertheless, the copper-chelating motif of picolyl azide molecules is not complete, requiring the presence of a copper chelator (e.g. THPTA) to achieve significant improvement in the kinetics of the CuAAC reaction3, 4.

In efforts to improve the performance of the CuAAC reaction in complex media, Click Chemistry Tools developed new chelating azides with a complete copper-chelating system in their structure, termed “Azides Plus"(Figure 3). These azides are capable of forming strong, active copper complexes and are therefore considered both reactant and catalyst in the CuAAC reaction. Using these types of azides, the CuAAC reaction becomes a bimolecular reaction and displays much faster kinetics compared to the CuAAC reaction performed with conventional azides.

Comparative kinetic measurements for the CuAAC reaction(Figure 4)were performed using an agarose-alkyne resin labeling experiment (3.0 uM CuSO4, with (6.0 uM) or without THPTA ligand) using Cy5 Azide Plus, Cy5 Picolyl Azide, and Cy5 bis-Triazole Azide – the fastest copper-chelating azide that has been reported to date7. As expected, the picolyl azide containing the incomplete copper-chelating motif displays relatively slow reactivity, in particular without the presence of THPTA. The kinetic data shows that completing a copper-chelating moiety greatly enhances reactivity, and importantly does not require the presence of copper-chelating ligands. Interestingly, the copper-chelating azides developed by Click Chemistry Tools display almost identical reactivity in the CuAAC reaction compared to the most reactive copper-chelating azide reported up to now7, bis-triazole azide.

The new copper chelating azides allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. This unprecedented reactivity in the CuAAC reaction is of special value for the detection of low abundance targets, improving biocompatibility, and any other application where greatly improved S/N ratio is highly desired.

Selected References:
  1. Steinmetz, N. F., et al. (2010). Labeling live cells by copper-catalyzed alkyne–azide click chemistry. Bioconjug Chem., 21 (10), 1912-6. [PubMed]

  2. Rodionov, V. O., et al. (2007). Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. J Am Chem Soc., 129 (42), 12705-12. [PubMed]
    Presolski, S. I., et al. (2010). Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. J Am Chem Soc., 132 (41), 14570-6. [PubMed]

  3. Simmons, J. T., et al. (2011). Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition. J Am Chem Soc., 133 (35), 13984-4001. [PubMed]

  4. Marlow, F. L., et al. (2014). Monitoring dynamic glycosylation in vivo using supersensitive click chemistry. Bioconjug Chem., 25 (4), 698-706. [PubMed]

  5. Clarke, S., et al. (2012). Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. Angew Chem Int Ed Engl., 51 (24), 5852-6. [PubMed]

  6. Gaebler, A., et al. (2016). A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins. J Lipid Res., 57 (10), 1934-1947. [PubMed]

  7. Gabillet, S., et al. (2014). Copper-chelating azides for efficient click conjugation reactions in complex media. Angew Chem Int Ed Engl., 53 (23), 5872-6. [PubMed]

訂購信息(靶點科技國內(nèi)倉庫):


靶點科技(北京)有限公司

靶點科技(北京)有限公司

地址:中關(guān)村生命科學(xué)園北清創(chuàng)意園2-4樓2層

© 2025 版權(quán)所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:355671  站點地圖  技術(shù)支持:化工儀器網(wǎng)  管理登陸

主站蜘蛛池模板: a 'v片欧美日韩在线| 色综合色狠狠天天综合色| 成人免费区一区二区三区| 色婷婷av久久久久久久| 亚洲男人av天堂午夜在| 在线观看亚洲精品一区二区| 国精品午夜福利视频不卡757| 手机在线看片| 久在线精品视频线观看| 国产美女遭强被高潮网站| 2020天堂在线亚洲精品专区| 无码专区天天躁天天躁在线 | 国产精品_九九99久久精品 | 国产99久久精品一区二区| 国产偷v国产偷v亚洲高清| 国产亚洲一区二区三区久久 | 国产成人精品一区二三区| 激情内射亚州一区二区三区爱妻| 绿帽人妻一区二区| 亚洲国产欧美国产第一区| 成年日韩片av在线网站| 成人片国产精品亚洲| 国色天香中文字幕在线视频| 欧美交换配乱吟粗大免费看| 亚洲日产aⅴ中文字幕无码 | 丰满少妇弄高潮了www| 91精品久久久一区二区三区| 中文字幕高清免费日韩视频在线 | 一区二区三区四区在线观看免费视频网| 国精品午夜福利视频| √天堂8资源中文在线| 欧美日韩高清一区二区三区| 亚洲h精品动漫在线观看| www国产精品内射老师| 野花社区在线观看视频| 好男人www在线影视社区| 男女后进式猛烈xx00动态图片| 国产国产精品人在线视| 欧美一区二区三区激情播放| 久久免费精品国产72精品九九| 久久国产成人精品av|